

what is un abrazo go to greetings

AI generated article from Bing

Newest Questions - Mathematics Stack Exchange

Mathematics Stack Exchange is a platform for asking and answering questions on mathematics at all levels.

(Un-)Countable union of open sets - Mathematics Stack Exchange

A remark: regardless of whether it is true that an infinite union or intersection of open sets is open, when you have a property that holds for every finite collection of sets (in this case, the union or intersection of any finite collection of open sets is open) the validity of the property for an infinite collection doesn't follow from that. In other words, induction helps you prove a ...

Mathematics Stack Exchange

Q&A for people studying math at any level and professionals in related fields

Como calcular el area de la superficie de un huevo con calculo

Estoy haciendo mi reciente evaluación interna del IB Matemáticas HL y mi tema es cómo calcular el área de superficie de un huevo . Quiero aplicar el cálculo conocimiento en esta pregunta, pero mi conocimiento sobre esta área es limitada.

Intuitive proof that $U(n)$ isn't isomorphic to $SU(n) \times S^1$

and what you'd really like is for an isomorphism $U(n) \rightarrow SU(n) \times U(1)$ to respect the structure of this short exact sequence. (If there were some random isomorphism that didn't have this property that would be less interesting.) For starters, this requires that $\det: U(n) \rightarrow U(1)$ and $U(n) \rightarrow U(1)$ have a section, or equivalently that the short exact sequence ...

Mnemonic for Integration by Parts formula? - Mathematics Stack Exchange

The Integration by Parts formula may be stated as: $\int uv' = uv - \int u'v$ I wonder if anyone has a clever mnemonic for the above formula. What I often do is to derive it from the Product Rule ...

functional analysis - Where can I find the paper "Un théorème de ...

J. P. Aubin, Un théorème de compacité, C.R. Acad. Sc. Paris, 256 (1963), pp. 5042–5044. It seems this paper is the origin of the "famous" Aubin-Lions lemma. This lemma is proved, for example, here and here, but I'd like to read the original work of Aubin. However, all I got is only a brief review (from MathSciNet).

probability - Suppose that U_1, U_2, \dots, U_n are iid $U(0,1)$ and S_n ...

We are given that U_1, U_2, \dots, U_n are iid $U(0,1)$, $S_n = \sum_{i=1}^n U_i$ and $n = \sum_{i=1}^n 1$ and $N = \min(k: S_k > 1)$. We want to show that $P(S_k \leq t) = t^k k!$. I attempted to use induction, but I arrived at something rather wrong. Here was my attempt. Suppose it is true for $k = 1$: $P(S_1 \leq t) = t^1 1!$. Suppose it is true ...

optimization - Minimizing KL-divergence against un-normalized ...

Minimizing KL-divergence against un-normalized probability distribution Ask Question Asked 1 year, 7 months ago Modified 1 year, 7 months ago

modular arithmetic - Prove that that $U(n)$ is an abelian group ...

Prove that that $U(n)$ is the set of all numbers relatively prime to n that are greater than or equal to 1 and less than or equal to $n - 1$ is an Abelian group. My thought process: for $a, b \in U(n)$ $a, b \in U(n)$. Associativity: $(a + b) + c = a + (b + c)$. Identity: 1 is in the set so $a \cdot 1 = a = 1 \cdot a$. Inverse: I'm stuck on how to ...