

navier stokes equation cylindrical

AI generated article from Bing

fluid dynamics - What does $\mu \nabla^2 \mathbf{V}$ mean in the Navier ...

In the Navier-Stokes equations there's this term $\mu \nabla^2 \mathbf{V}$. I don't really understand what this means. What is the physical meaning of the Laplacian of the velocity vector field? I've seen some explanations of this, but they seem complicated. Could you just give an intuitive explanation of what it means?

What are the assumptions of the Navier-Stokes equations?

Navier Stokes equations can be exactly derived from kinetic equations. There are several assumptions regarding the reduction of the multiparticle distribution equations to a 1-particle distribution function $f(v, r)$ $f(v, r)$.

What is the Navier-Stokes Energy equation? - Physics Stack Exchange

I'm trying to understand the basics of fluid dynamics and the Navier-Stokes equations by following the short book A Mathematical Introduction to Fluid Dynamics by Chorin and Marsden (I'm an applied

fluid dynamics - What do mathematicians mean by Navier Stokes existence ...

I still don't know what mathematicians mean by Navier-Stokes existence and smoothness. Since there is a reward for proving it, it seems important to them. (in past several months I've read online

Deriving the Integral Form of the Navier Stokes equation

I'm trying to follow the book Turbulence by Davidson. Currently I'm having trouble in converting the differential NS equation to its integral form but I cannot see clearly how the Divergence theorem...

fluid dynamics - From where does irreversibility arise in the Navier ...

In the Navier-Stokes equations, the term that impedes the reversibility is the advective term $\mathbf{u} \cdot \nabla \mathbf{u}$. This term represents the change in the local fluid velocity as the fluid is carried along by a bulk motion.

Is there a relativistic version of Navier-Stokes equations?

The relativistic version of Navier-Stokes equations is a quite different theory called Israel-Stewart hydrodynamics ("relativistic Navier-Stokes" are known as "Eckart" or "Landau" relativistic hydrodynamics, but this naive relativistic generalization of Navier-Stokes does not work, it is highly unstable and acausal, so the more advanced and complex formulation of Israel-Stewart is needed).

Convective and Diffusive terms in Navier Stokes Equations

My question has 2 parts: I just followed the derivation of Navier Stokes (for Control Volume CFD analysis) and was able to understand most parts. However, the book I use (by Versteeg) does not deri...

fluid dynamics - Depth Integration of Advective Terms in Navier Stokes ...

Depth Integration of Advective Terms in Navier Stokes to a Conservative Form Ask Question Asked 12 months ago Modified 12 months ago

What is the physical meaning of Navier-Stokes equations?

3 Strictly speaking the Navier-Stokes equation is used for the vector equation (or the scalar equations in every direction of space) describing the conservation of momentum for a continuous deformable chunk of mass, a continuum, that is characterised by its viscous properties (it basically acts like a huge damper).