
future 4 student book pdf
AI generated article from Bing

std::future - cppreference.com
The class template std::future provides a mechanism to access the result of asynchronous
operations: An asynchronous operation (created via std::async, std::packaged_task, or std::promise)
can provide a std::future object to the creator of that asynchronous operation. The creator of the
asynchronous operation can then use a variety of methods to query, wait for, or extract a value from
the std ...

std::future::wait_until - cppreference.com
If the future is the result of a call to async that used lazy evaluation, this function returns
immediately without waiting. The behavior is undefined if valid () is false before the call to this
function, or Clock does not meet the Clock requirements. The programs is ill-formed if
std::chrono::is_clock_v is false.(since C++20)

c++ - std::future in simple words? - Stack Overflow
In summary: std::future is an object used in multithreaded programming to receive data or an
exception from a different thread; it is one end of a single-use, one-way communication channel
between two threads, std::promise object being the other end.

std:: promise - cppreference.com
The promise is the "push" end of the promise-future communication channel: the operation that
stores a value in the shared state synchronizes-with (as defined in std::memory_order) the successful
return from any function that is waiting on the shared state (such as std::future::get).

std::future::get - cppreference.com
The get member function waits (by calling wait ()) until the shared state is ready, then retrieves the
value stored in the shared state (if any). Right after calling this function, valid () is false. If valid () is
false before the call to this function, the behavior is undefined.

future grants on a snowflake database - Stack Overflow
Considerations When future grants are defined on the same object type for a database and a schema
in the same database, the schema-level grants take precedence over the database level grants, and
the database level grants are ignored. This behavior applies to privileges on future objects granted
to one role or different roles. Reproducible example:



Cannot build CMake project because "Compatibility with
CMake < 3.5 has ...
In this case it does work. In general, it probably doesn't. I'm wondering how this break in backwards
compatibility should in general be navigated. Perhaps installing a previous version of CMake is the
only way that always works? That would mean that each project in the future should specify the
CMake version on which it should be built.

std::future::wait_for - cppreference.com
If the future is the result of a call to std::async that used lazy evaluation, this function returns
immediately without waiting. This function may block for longer than timeout_duration due to
scheduling or resource contention delays. The standard recommends that a steady clock is used to
measure the duration.

std::async - cppreference.com
The return type of std::async is std::future, where V is: ... The call to std::async synchronizes with
the call to f, and the completion of f is sequenced before making the shared state ready.

React Router Future Flag Warning in Remix Vite app
⚠️ React Router Future Flag Warning: The revalidation behavior after 4xx/5xx action responses is
changing in v7. You can use the v7_skipActionErrorRevalidation future flag to opt-in early.


