

1000 english verbs forms

AI generated article from Bing

arithmetic - How much zeros has the number \$1000!\$ at the end ...

1 If a number ends with n zeros than it is divisible by 10^n , that is $2^n 5^n$. A factorial clearly has more 2's than 5's in its factorization so you only need to count how many 5's are there in the factorization of $1000!$. $1000!$

Why is kg/m^3 to g/cm^3 1 to 1000? - Mathematics Stack Exchange

I understand that changing the divisor multiplies the result by that, but why doesn't changing the numerator cancel that out? I found out somewhere else since posting, is there a way to delete this?

Creating arithmetic expression equal to 1000 using exactly eight 8's ...

I would like to find all the expressions that can be created using nothing but arithmetic operators, exactly eight 8's, and parentheses. Here are the seven solutions I've found (on the Internet)...

algebra precalculus - Multiple-choice: sum of primes below \$1000 ...

For example, the sum of all numbers less than 1000 is about 500,000. So, $168 \times 500,000 = 84,000$. $84,000$ should be in the right ballpark. 76127 is the right answer, by this reasoning.

probability - 1/1000 chance of a reaction. If you do the action 1000 ...

A hypothetical example: You have a 1/1000 chance of being hit by a bus when crossing the street. However, if you perform the action of crossing the street 1000 times, then your chance of being ...

combinatorics - The number of bacteria in a culture is 1000 and this ...

The number of bacteria in a culture is 1000 and this number increases by 250% every two hours. How many bacteria is present after 24 hours?

elementary number theory - $2017^{2016^{2015}} \pmod{1000}$...

I'm trying to solve the following exercise: $2017^{2016^{2015}} \pmod{1000}$, here's what I've already come up with: Using Euler's congruence, one finds that $2017^{2016^{2015}} \equiv 2017^{2016^2} \pmod{1000}$

statistics - If I ask 1000 people to choose a random number between ...

Imagine I asked 1000 people to choose a number between 0 and 999 (both inclusive, the numbers are not biased, they will be completely random) and write that number down. Now, after that, pick a

Find the remainder when 7^{7^7} is divided by 1000

Just modular exponentiation. Eventually you do have to do some arithmetic. I suspect there is some trick to this problem in $7^{7^3} \equiv 7^3 \pmod{1000}$ that creates a shortcut. Dunno off the top of my head though. The numbers are so small that any tricks are really a waste of time.

Number of positive integers less than or equal to 1000 and are not ...

My answer was 153, it's long process to get that, notice that 17, 19, 23 are primes so is there any particular way to handle these types of problems? Please help me.